Synthesis of 6,7-dehydroartemisinic acid

Lai-King Sy and Geoffrey D. Brown*
Chemistry Department, The University of Hong Kong, Pokfulam Rd., Hong Kong.
E-mail: gdbrown@hkucc.hku.hk; Fax: 852-2857 1586; Tel: 852-2859 7915

Received (in Cambridge, UK) 21st May 2001, Accepted 2nd July 2001
First published as an Advance Article on the web 11th September 2001

The natural product 6,7-dehydroartemisinic acid from Artemisia annua has been synthesized in four steps from artemisitene, which was in turn prepared in four steps from commercially available artemisinin. The forward synthesis involves the acid degradation of artemisitene and some comparisons are made between the products from this reaction and the more extensively studied acid degradation reaction of its 11,13-dihydro analogue, artemisinin

Introduction

The Chinese medicinal plant Artemisia aппиа has been the subject of intensive phytochemical investigation following the discovery of the potent anti-malarial sesquiterpene artemisinin (qinghaosu) over twenty years ago. ${ }^{1}$ Around thirty-five further cadinane and amorphane sesquiterpenes have now been isolated from this species. ${ }^{2,3}$ Several total ${ }^{4-12}$ and partial ${ }^{13-17}$ syntheses have been described for artemisinin (1), and total ${ }^{5,18}$ and partial ${ }^{6,19-30}$ syntheses of some of the other natural products from A. anпиа, including artemisitene (2), ${ }^{19}$ deoxyartemisinin (3), ${ }^{5,6,13,20,21}$ dihydroartemisinic acid (4), ${ }^{22}$ artemisinic acid (5), ${ }^{23}$ arteannuin $\mathrm{B}(6)^{6,24}$ (and its analogues), ${ }^{18}$ deoxyarteannuin B (7), ${ }^{25}$ dihydro-epi-deoxyarteannuin $\mathrm{B} \quad(\mathbf{8}),{ }^{22,26,27}$ epi-deoxyarteannuin $\mathrm{B}(9),{ }^{25}$ arteannuin $\mathrm{A}(\mathbf{1 0}),{ }^{6,28}$ epoxyarteannuic acid $(11)^{29}$ and artemisilactone (12) ${ }^{30}$ (also referred to as arteannuins E and $F)^{6}$ are now also reported in the literature (Fig. 1).

We herein describe the synthesis in eight steps of another natural product from A. annиа, 6,7-dehydroartemisinic acid (13), which was first isolated by El-Feraly et al. in 1989. ${ }^{31}$ A reconstructive strategy, based on commercially available artemisinin as the starting material, has been employed.

Results and discussion

Our retrosynthetic design for the synthesis of the target 11,13dehydroamorphane, compound 13 , required the preparation of the $\Delta^{11,13}$-unsaturated decalenone \dagger methyl ester, compound 14 (Scheme 1). The selection of this intermediate was based on recent work in which we have shown that the free acid form of the 11,13 -dihydro analogue of $\mathbf{1 4}$, compound $\mathbf{1 5 a} \ddagger$ [obtained from acid degradation of artemisinin (1) via compound 16a \ddagger], could be converted into 13a, \ddagger the 11,13 -dihydro analogue of the target molecule, in good yield by Grignard reaction (Scheme 2). ${ }^{22}$ According to close precedents in the literature ${ }^{32,33}$ we expected that $\mathbf{1 4}$ (or its free acid form 15) might in turn be prepared from artemisitene (2) by an acid degradation reaction. Two methods are reported in the literature for the preparation of $\Delta^{11,13}$-unsaturated artemisitene (2) from commercially available artemisinin (1). El-Feraly and McPhail have adopted a photochemical route, involving the ene-type reaction of ${ }^{1} \mathrm{O}_{2}$ with an enol ether, ${ }^{34}$ while Chinese workers have chosen an oxidative selenation procedure to introduce unsaturation at the

[^0]

3
$2 \mathrm{R}=\mathrm{CH}_{2}$

7

$8 \mathrm{R}=\mathrm{CH}_{3}$
$9 \mathrm{R}=\mathrm{CH}_{2}$

10

11

12

Fig. 1 Natural products from A. annиa which have been obtained by either partial or total synthesis.

11,13-position both for artemisinin itself ${ }^{35}$ and for other 11,13dihydro natural products ${ }^{6,23}$ from A. annиa. In practice, we have found the procedure of El-Feraly and McPhail for desaturating the 11,13-position of artemisinin to be the more effective.

In the forward synthesis, treatment of artemisinin with sodium borohydride resulted in smooth transformation of the ester functionality in $\mathbf{1}$ to a mixture of α - and β-lactol epimers in dihydroartemisinin (17), ${ }^{36}$ as expected (Scheme 3). Enol ether 18, ${ }^{37-40}$ obtained by dehydration of $\mathbf{1 7}$, was a surprisingly stable compound, which could be stored for up to two years without any significant autoxidation being noted. The only side-product from the dehydration of $\mathbf{1 7}$ to $\mathbf{1 8}$ was the natural product deoxyartemisinin (3), which became the major product if the reaction was refluxed. Full NMR assignments for deoxyartemisinin (3) are reported in Tables 1 and 3 for the first time. Deoxyartemisinin may be formed by a Kornblum-de la

Scheme 1 Retrosynthetic scheme for the preparation of 6,7-dehydroartemisinic acid $\mathbf{1 3}$ from artemisinin 1.

16a
$\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

Scheme 2 Recently reported preparation of 13a from the acid degradation of $\mathbf{1}$.

Mare process operating on a peroxyhemiacetal intermediate, ${ }^{41}$ following "unzipping" of the 1,2,4-trioxane system of dihydroartemisinin in the presence of acid (Fig. 2).

Photo-oxygenation of the enol ether functional group in $\mathbf{1 8}$ yielded the secondary allylic hydroperoxide 19, accompanied by the cleavage product 20^{40} (estimated at about 5% by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture). The amount of formaldehydesubstituted acetal $\mathbf{2 0}$ appeared to increase when attempts were made to separate $\mathbf{1 9}$ and 20 by column chromatography on silica gel; we propose that Hock cleavage is responsible for the formation of $\mathbf{2 0}$ from $\mathbf{1 9}$ (Fig. 3) and that this reaction is catalysed by the acidic properties of the stationary phase. Because of the problems encountered when attempting to purify $\mathbf{1 9}$, the crude photo-oxygenation reaction product was generally used for conversion into artemisitene (2), in the next step. Dehydration of $\mathbf{1 9}$ to 2 proceeded in good yield, resulting in only one minor side-product, $21,{ }^{38,41,42}$ which is also believed to be formed by "unzipping" of the 1,2,4-trioxane ring in 19 (following homolytic cleavage of the secondary allylic hydroperoxide functional group) under basic conditions (Fig. 4). Full NMR assignments for artemisitene (2) are reported in Tables 1 and 3 for the first time.

Scheme 3 Forward synthesis of artemisitene $\mathbf{2}$ from artemisinin 1.

Fig. 2 Proposed mechanism for the formation of side-product $\mathbf{3}$ in the photochemical conversion of artemisinin $\mathbf{1}$ to artemisitene $\mathbf{2}$.

Table $1{ }^{13} \mathrm{C}$ NMR data (δ, ppm) for compounds 2, 3, 13, 14, 16 and 18-23

Position	2	3	13	14	16	18	19	20	21	22	23
1	50.1	44.5	42.4	45.0	56.5	51.6	51.9	52.7	49.1	56.8	54.0
2	24.6	22.0	27.6	25.6	20.1	24.6	24.5	24.8	21.3	26.8	21.5
3	35.8	33.9	31.1	35.2	41.1	36.4	36.3	35.7	43.6	40.8	41.7
4	105.4	109.2	137.3	199.9	209.1	104.7	104.6	105.4	208.7	208.4	209.0
5	93.5	99.6	121.6	122.5	30.0	89.9	88.3	86.6	204.4	30.1	29.9
6	79.4	82.4	134.0	168.2	210.4	79.2	80.7	85.0	92.0	212.9	210.0
7	46.1	42.3	127.0	45.8	52.4	44.6	47.5	57.1	42.8	49.0	53.1
8	31.6	23.5	30.9	32.2	31.0	30.2	31.3	23.8	21.7	25.6	27.7
9	33.7	33.4	31.5	34.8	34.4	34.3	34.0	33.6	34.3	26.9	32.3
10	37.7	35.3	34.3	39.1	40.1	37.7	37.5	37.4	33.8	37.0	37.5
11	134.9	32.7	141.2	140.5	138.6	108.3	138.6	208.2	140.6	138.6	138.5
12	162.8	171.9	172.1	167.0	167.3	135.2	105.5	159.4	100.4	167.1	167.6
13	130.4	12.6	130.0	126.8	125.4	16.4	119.8	32.3	111.2	125.8	125.6
14	19.9	18.6	20.3	20.2	20.6	20.5	20.2	19.9	20.4	19.5	13.4
15	25.4	23.9	23.9	-	-	26.1	25.9	25.3	30.0	-	-
12-OMe	-	-	-	52.1	52.0	-	-	-	-	51.9	51.9

Fig. 3 Proposed mechanism for the formation of side-product 20 in the photochemical conversion of artemisinin $\mathbf{1}$ to artemisitene $\mathbf{2}$.

The solubility of artemisitene in the sulfuric acid-methanol medium, which we have previously used for effecting acid degradation of $\mathbf{1}$ to $\mathbf{1 6 a}$ in good yield, was greatly reduced as compared to artemisinin itself, and this may be one of the reasons why little reaction was observed when 2 was subjected to the same conditions as those which are reported to give a high yield of 16a from 1 (Scheme 2). ${ }^{22,26}$ Artemisitene (2) was much more soluble in a methanolic medium incorporating acetic acid in addition to sulfuric acid, which has previously been reported to yield the 7 -epimerized product $24 a$ when applied to artemisinin. ${ }^{6,32}$ However, under these conditions, 2 was converted into a complex mixture of products, including 14 and 22-29 in addition to $\mathbf{1 6}$ (Figs. 5 and 7).

11,13-Dihydro analogues for all of the 1,7-epimeric cyclohexanones (16a, 22a and 23a) and the decalenone lactone

Fig. 4 Proposed mechanism for the formation of side-product 21 in the photochemical conversion of artemisinin $\mathbf{1}$ to artemisitene $\mathbf{2}$
(24a) isolated from acid degradation of $\mathbf{2}$, have been reported previously from acid degradation of 1 (Fig. 6), and the mechanisms suggested for their formation from artemisitene in Fig. 5 parallel those previously proposed for the formation of these products from the acid degradation of artemsinin. ${ }^{32,43}$ 11,13-Dihydro analogues of the remaining decalenone reaction products (14a, 25a and 26a) shown in Fig. 5 have also been isolated from further reactions of 16a and 24a, ${ }^{32,44}$ although such cyclized products have not been reported directly from the acid degradation of $\mathbf{1}$ (the 11,13-dihydro analogue of $\mathbf{2 7}$ is not known).
The 11,13-dihydro analogues of the two tricyclic products shown in Fig. 7 (28a and 29a) have been reported on one occasion from the acid degradation of $1 .{ }^{45}$ The relative ease of formation of these two products from artemisitene may be the result of the enhanced acidity of the H-7 proton in compound 16, which can form a more stable extended enolate on proton abstraction, allowing the intramolecular aldol reaction shown in Fig. 7 to proceed more readily. The two-dimensional NMR results which were used to determine the unusual structures of 28/29 are shown explicitly in Fig. 8. (NB Complete ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ assignments for all compounds reported in Tables $1-4$ were rigorously determined in the same way.)
Thus, although acid degradation reactions of $\mathbf{2}$ can yield a wide variety of products, most of which have parallels in the

Table $2 \quad{ }^{13} \mathrm{C}$ NMR data (δ, ppm) for compounds 24-33

Position	24	25	26	27	28	29	30	31	32	33
1	45.7	46.5	42.4	41.6	51.8	50.2	$44.7{ }^{\text {a }}$	$44.6{ }^{a}$	47.3	42.5
2	21.5	24.2	26.8	25.6	29.0	32.3	$24.2{ }^{\text {b }}$	$24.5{ }^{\text {b }}$	20.2	27.7
3	35.9	40.6	36.6	36.1	32.0	32.5	$35.3{ }^{\text {c }}$	$36.0{ }^{\text {c }}$	26.3	31.2
4	207.0	206.4	199.8	199.9	90.4	90.1	68.9	68.1	136.8	137.0
5	46.8	53.0	127.8	124.8	24.3	24.1	125.8	125.3	123.3	121.8
6	87.9	85.7	165.8	165.8	208.9	208.6	142.1	142.4	79.2	133.6
7	46.3	45.3	44.5	45.9	60.7	60.5	$44.3{ }^{\text {a }}$	$44.2{ }^{\text {a }}$	52.1	127.6
8	22.7	28.9	28.7	26.7	27.2	21.3	$32.3{ }^{\text {b }}$	$31.7{ }^{\text {b }}$	22.2	30.9
9	29.6	31.3	29.8	33.2	26.1	27.8	$35.9{ }^{\text {c }}$	$35.1{ }^{\text {c }}$	35.0	31.6
10	30.8	30.2	38.4	35.4	38.3	38.1	$38.9{ }^{\text {a }}$	$40.0^{\text {a }}$	30.5	34.3
11	137.4	141.4	142.4	140.4	137.4	138.1	143.9	144.8	159.0	141.6
12	169.2	169.1	167.2	127.4	168.2	168.1	167.9	167.9	80.8	167.6
13	120.1	121.3	125.3	166.8	124.2	124.6	125.2	125.7	100.8	127.7
14	19.0	20.0	20.2	14.7	20.3	18.5	20.0	20.2	19.8	20.3
15	-	-	-	-	-	-	28.5	29.9	23.7	23.9
$12-\mathrm{OMe}$	-	-	52.1	52.1	-	-	52.0	51.9	-	52.0
16	-	-	-	-	-	-	-	-	$28.8{ }^{\text {d }}$	-
17	-	-	-	-	-	-	-	-	31.7^{d}	-

${ }^{a}$ Assignments interchangeable within column. ${ }^{b}$ Assignments interchangeable within column. ${ }^{c}$ Assignments interchangeable within column. ${ }^{d}$ Assignments interchangeable within column.

Fig. 5 Proposed mechanism for the formation of 14, 16 and 22-27 in the acid degradation of $\mathbf{2}$.
chemistry of its 11,13 -dihydro analogue $\mathbf{1}$, the conditions required for obtaining a clean reaction of 2 were clearly not the same as for $\mathbf{1}$. Our attempts to find conditions which would result in a better yield of $\mathbf{1 6}$ from $\mathbf{2}$ by systematic modifications of the various acid degradation procedures for $\mathbf{1}^{32,33,40,42,44}$ which have been reported in the literature were unsuccessful.

However, it did prove possible to find conditions which resulted directly in the desired decalenone methyl ester 14 (presumably derived from the in situ intramolecular aldol reaction of 16 see Fig. 5) in reasonable yield and with little contamination by side-products formed by either epimerization at $\mathrm{C}-1 / \mathrm{C}-7$ or as a result of methyl ester cleavage. This was fortuitous, as

Table $3{ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds 2, 3, 13, 14, 16 and 18-23

Position	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$
1	1.45	1.28	1.70	2.07	2.21	1.44	1.31	1.47	1.38	2.17	2.65
2α	1.97	1.92	2.11	2.26	1.85	1.93	1.92	1.97	1.75	2.07	1.97
2β	1.49	1.28	1.16	1.76	1.74	1.56	1.50	1.51	1.75	1.94	1.41
3α	2.41	1.78	2.00	2.29	2.55	2.41	2.38	2.48	2.67	2.49	2.57
3β	2.07	1.63	2.12	2.35	2.38	2.04	2.06	2.06	2.55	2.46	2.32
5	5.99	5.70	5.88	5.59	2.12	5.59	5.76	6.51	9.97	2.14	2.12
7	2.55	2.00	-	3.41	3.56	1.71	2.25	2.33	2.75	3.65	3.52
8α	1.77	1.92	2.20	1.93	2.08	2.06	1.84	1.84	2.11	2.07	2.07
8β	1.58	1.01	2.20	1.64	1.77	1.18	1.64	1.37	1.70	1.92	2.00
9α	1.21	1.09	1.36	1.41	1.62	1.12	1.09	0.99	1.21	1.58	1.78
9β	1.75	1.81	1.70	1.91	1.94	1.66	1.64	1.75	1.88	2.15	2.07
10	1.46	1.28	1.34	1.52	1.62	1.43	1.40	1.49	1.64	2.13	2.43
11	-	3.18	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	6.19	5.77	7.88	5.54	-	-
$13 \mathrm{a}^{a}$	6.56	1.20	6.46	6.44	6.35	1.59	5.33	2.45	5.04	6.35	6.33
$13 \mathrm{~b}^{b}$	5.67		5.63	5.62	5.54		5.20		4.88	5.58	5.56
14	1.02	0.94	1.02	1.07	1.12	0.98	0.98	0.99	0.95	0.99	0.80
15	1.46	1.53	1.71	-	-	1.43	1.46	1.41	2.15	-	-
12 OMe	-	-	-	3.74	3.74	-	-	-	-	3.74	3.57

${ }^{a}$ Proton cis with 12 -functional group. ${ }^{b}$ Proton trans with 12 -functional group.

22a $1 \alpha-\mathrm{H}$ 23a $1 \beta-\mathrm{H}$

24a

25a

14a $7 \alpha-\mathrm{H}$ 26a 7 β - H

28a/29a年

Fig. 6 Some alternative products, 22a, 23a, 24a, 28a and 29a, which have been reported in the literature from the acid degradation of $\mathbf{1}$. Compounds 14a, 25a and 26a have been reported from further reactions of 16a and 24a.

28/29
Fig. 7 Proposed mechanism for the formation of 28 and 29 via intermediate 16 (see Fig. 5) in the acid degradation of $\mathbf{2}$.

Fig. 8 Critical 2D-NMR correlations used in determining the planar structures of $\mathbf{2 8} / \mathbf{2 9}$ from the acid degradation of $\mathbf{2}$. Arrows from ${ }^{13} \mathrm{C}$ to ${ }^{1} \mathrm{H}$ indicate two- and three-bond ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlations observed in HMBC; bold lines indicate ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ correlations observed in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.
conversion of $\mathbf{1 6}$ to $\mathbf{1 4}$ by Robinson annulation would have required an additional synthetic step $[c f$. Scheme 2, in which, in order to obtain 15a (the free acid 11,13-dihydro analogue of 14), the immediate product of acid degradation of artemisinin 1, compound 16a, must first be subjected to cyclization in the presence of $\left.\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}\right] .{ }^{32}$ From the above results, we conclude that the presence of unsaturation at the 11,13-position in $\mathbf{2}$ results in a greater tendency to undergo intramolecular aldolization reactions further to the opening of the $1,2,4-$ trioxane ring and accompanying loss of formic acid, which are normally associated with the treatment of $\mathbf{1}$ with strong acid. This tendency leads to the direct isolation of decalenones 14, 25, 26 and 27, which have no analogies in the known acid degradation reactions of $\mathbf{1}$. The explanation for this effect is not immediately obvious.
Addition of the Grignard reagent from methyl iodide to the ketone group in $\mathbf{1 4}$ resulted in the expected approximately $1: 1$ epimeric mixture of tertiary allylic hydroxides $\mathbf{3 0}$ and 31. An alternative addition product $\mathbf{3 2}$ was also formed if Grignard reagent was used in excess ($\mathbf{3 2}$ appears to be the product of two successive Grignard reactions with the methyl ester group, forming a tertiary alcohol, which then participates in $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ addition to the allylic alcohol group-itself formed by attack of a third equivalent of methyl Grignard reagent at the 4-position of the α, β-unsaturated ketone in 14 resulting in a fivemembered lactone ring, see Scheme 4). Although this epimeric mixture of $\mathbf{3 0 - 3 1}$ could be separated by HPLC, it was generally found more expedient simply to treat the crude mixture with acid in order to induce dehydration, which cleanly yielded the methyl ester of 6,7 -dehydroartemisinic acid 33. The methyl ester group in 33 could then be hydrolysed to the free acid by treatment with base, thereby resulting in the target compound, 6,7-dehydroartemisinic acid 13 in good yield. The physical properties of $\mathbf{1 3}$ obtained by synthesis were identical with those

Table $4{ }^{1} \mathrm{H}$ NMR data (δ, ppm) for compounds 24-33

Position	24	25	26	27	28	29	30	31	32	33
1	1.31	1.55	2.11	2.65	2.45	2.55	c	c	1.39	1.69
2α	2.18	2.19	2.27	2.07	2.15	2.09	c	c	2.04	2.12
2β	2.02	1.90	1.65	1.90	1.97	1.99	c	c	1.79	1.16
3α	2.38	2.33	2.30	2.32	2.03	1.98	c	c	1.83	2.00
3β	2.28	2.56	2.47	2.43	2.19	2.06	c	c	1.89	2.13
5α	2.53	2.38	5.94	5.70	1.46	1.45	5.04	5.07	5.17	5.88
5β	2.83	2.51								
7	2.75	2.71	3.68	3.40	-	-	3.14	3.14	2.37	-
8α	2.14	1.93	2.03	1.93	2.19	1.99	c	c	1.76	2.17
8β	1.88	1.40	1.77	1.71	1.99	1.96	c	c	1.12	2.17
9α	1.24	1.17	1.35	1.74	1.54	1.65	c	c	1.11	1.35
9β	1.66	1.71	1.60	1.89	2.24	1.77	${ }^{\text {c }}$	${ }^{\text {c }}$	1.76	1.70
10	1.63	1.47	1.39	2.22	2.41	2.21	c	c	1.41	1.33
$13 \mathrm{a}^{a}$	6.30	6.17	6.22	6.40	6.49	6.51	6.35	6.33	4.84	6.32
$13 \mathrm{~b}^{b}$	5.50	5.57	5.47	5.66	5.51	5.52	5.55	5.55	4.70	5.49
14	0.99	1.02	1.04	0.98	1.04	1.09	0.97	0.99	0.94	1.02
15	-	-	-	-	-	-	1.20	1.20	1.62	1.71
$12-\mathrm{OMe}$	-	-	3.76	3.75	-	-	3.74	3.75	.	3.74
16	-	-	-	-	-	-	-	-	$1.38{ }^{\text {d }}$	-
17	-	-	-	-	-	-	-	-	$1.27{ }^{\text {d }}$	-

${ }^{a}$ Proton cis with 12 -functional group. ${ }^{b}$ Proton trans with 12 -functional group. ${ }^{c}$ Not assigned. ${ }^{d}$ Interchangeable within column.
reported for the natural product (full ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ assignments for 13, made by 2D-NMR as elsewhere, appear in Tables 1 and 3 for the first time and should replace some of the unassigned and erroneous assignments (e.g. C-6 was previously wrongly assigned as $\mathrm{C}-4$) made in the initial report of $\mathbf{1 3}$ as a natural product). ${ }^{31}$

Experimental

General

Chemical shifts are expressed in $\mathrm{ppm}(\delta)$ relative to TMS as internal standard. Proton chemical shifts, multiplicities, coupling constants and integrals reported in this section are those which are clearly resolved in one-dimensional ${ }^{1} \mathrm{H}$ NMR without recourse to 2D-NMR analysis (see Tables 1-4 for 2D-NMR analysis). All NMR experiments were run on a Bruker DRX 500 instrument. HSQC, HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY spectra were recorded with 1024 data points in F_{2} and 256 data points in F_{1}. High-resolution mass spectra were recorded in EI mode at 70 eV on a Finnigan-MAT 95 MS spectrometer. IR spectra were recorded in CHCl_{3} on a Shimadzu FT-IR-8201 PC instrument. Column chromatography was performed using
silica gel $60-200 \mu \mathrm{~m}$ (Merck). HPLC separations were performed using a Varian chromatograph equipped with RI star 9040 and UV 9050 detectors and either a normal phase Intersil PREP-SIL $20 \mathrm{~mm} \times 25 \mathrm{~cm}$ column or a YMC diol 20 $\mathrm{mm} \times 25 \mathrm{~cm}$ column, flow rate $8 \mathrm{ml} \mathrm{min}^{-1}$. Melting points were recorded by a Perkin-Elmer differential scanning calorimeter 7 (DSC7). Optical rotations were measured by a Perkin-Elmer 343 Polarimeter (Na 589 nm); $[a]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ and CHCl_{3} was used as solvent.

Forward synthesis of artemisitene (2) from artemisinin (1)

Reduction of artemisinin (1). To a solution of $\mathbf{1}(2.4 \mathrm{~g}$, 8.5 mmol) (ex Kunming pharmaceuticals, Kunming, China) in $\mathrm{MeOH}(120 \mathrm{ml})$ cooled in an ice-salt bath was added $\mathrm{NaBH}_{4}(2.4 \mathrm{~g})$ over a period of 100 min . The temperature of the reaction was maintained below $0{ }^{\circ} \mathrm{C}$ and stirring continued for a further 75 min , before $\mathrm{CH}_{3} \mathrm{COOH}$ was added to neutralize the mixture. $\mathrm{HCl}(3 \mathrm{M})$ was then added dropwise to precipitate the product. The reaction mixture was left in the fridge overnight, then filtered and the solid precipitate was re-dissolved in CHCl_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed under reduced pressure to yield $\mathbf{1 7}$ as a $1: 1$ mixture of 12α - and 12β -

Scheme 4 Forward synthesis of 6,7-dehydroartemisinic acid 13 from artemisitene 2.
diastereoisomers ($2.3 \mathrm{~g}, 96 \% \mathrm{w} / \mathrm{w}$) without the need for further purification. The physical properties of 17 were identical with those reported previously. ${ }^{36}$

Dehydration of 17. Dry $\mathrm{H}_{3} \mathrm{PO}_{4}$ was freshly prepared by overnight azeotropic distillation of a solution of $\mathrm{H}_{3} \mathrm{PO}_{4}(5.02 \mathrm{~g})$ in dry $\mathrm{C}_{6} \mathrm{H}_{6}(60 \mathrm{ml})$ in a Dean-Stark apparatus. To a solution containing $\mathrm{H}_{3} \mathrm{PO}_{4}(0.20 \mathrm{~g})$ and N, N^{\prime}-dicyclohexylcarbodiimide (DCC; $4.4 \mathrm{~g}, 21.2 \mathrm{mmol}$) in dry $\mathrm{C}_{6} \mathrm{H}_{6}$-DMSO ($24 \mathrm{ml}-3 \mathrm{ml}$), was added $17(2.0 \mathrm{~g}, 7.04 \mathrm{mmol})$. The mixture was stirred at room temperature for 21 h and completion of the reaction was determined by TLC. Aqueous oxalic acid solution ($5 \%, 100 \mathrm{ml}$) was then added and stirring was continued for a further 30 min before addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extraction by $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 250 \mathrm{ml})$. The combined organic layers were washed with brine ($3 \times 50 \mathrm{ml}$), dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and solvent was removed under reduced pressure. The residue was taken up in EtOAc- n-hexane ($3: 7 ; 50 \mathrm{ml}$) and filtered to remove insoluble dicyclohexylurea. Following removal of solvent, the crude product ($1.6 \mathrm{~g} ; 80 \% \mathrm{w} / \mathrm{w}$) was purified by column chromatography (20% EtOAc- n-hexane) to yield 18 ($1.28 \mathrm{~g} ; 68 \%$) and 3 ($0.20 \mathrm{~g} ; 11 \%$).

Compound 18: Oil; $[a]_{\mathrm{D}}+124.6$ (c 6.5, CHCl_{3}); IR $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right): 3028,2999,2930,1686,1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}{ }^{\text {max }} \delta$, $\left.\mathrm{CDCl}_{3}\right): 6.19(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{d}$, $J=0.8 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) 266.1517 [$\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$, requires 266.1518] (42\%), 237 (10), 166 (31), 162 (100), 133 (53).

Compound 3: Oil; $[a]_{\mathrm{D}}-42.8$ (c 5.1, CHCl_{3}); IR $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right): 3020,2930,2876,1744,1459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (δ, $\left.\mathrm{CDCl}_{3}\right): 5.70(1 \mathrm{H}, \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{dq}, J=4.5,7.3 \mathrm{~Hz}), 2.00(1 \mathrm{H}$, ddd, $J=14.0,4.5,4.0 \mathrm{~Hz}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$, $0.94(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) 266.1521 [${ }^{+}$, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$, requires 266.1518] (10%), 234 (10), 221 (100), 210 (18), 180 (25), 163 (100), 152 (50).

Photo-oxygenation of $\mathbf{1 8}$. A stirred solution of $\mathbf{1 8 (1 . 2 \mathrm { g } , 4 . 5 1}$ mmol) in acetone (100 ml) containing Methylene Blue (5.0 mg) was subjected to strong light (500 W bulb) and maintained at $25^{\circ} \mathrm{C}$. After 4 h , when TLC showed the complete disappearance of the starting material, acetone was removed under reduced pressure and replaced by $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ in order to precipitate the photosensitizer. Insoluble Methylene Blue was filtered off and the crude product mixture ($1.15 \mathrm{~g} ; 96 \% \mathrm{w} / \mathrm{w}$) was separated by column chromatography (25% EtOAc- n-hexane) to yield 19 $(1.06 \mathrm{~g}, 79 \%)$ and $20(0.14 \mathrm{~g}, 10 \%)$ as a minor side-product.

Compound 19: Solid; mp 148-150 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+158$ (c 0.8, CHCl_{3}); IR $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 3387$ (br), 3028, 2932, 2854, 1456, $1379 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$): $9.39(1 \mathrm{H}, \mathrm{s},-\mathrm{OOH}), 5.77(2 \mathrm{H}$, s), $5.33(1 \mathrm{H}, \mathrm{s}), 5.20(1 \mathrm{H}, \mathrm{s}), 2.38(1 \mathrm{H}, \mathrm{ddd}, J=13.6,13.6,4.0$ $\mathrm{Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}), 2.06(1 \mathrm{H}, \mathrm{ddd}, J=13.6$, $4.3,4.3 \mathrm{~Hz}), 1.84(1 \mathrm{H}$, dddd, $J=12.9,4.2,3.4,3.4 \mathrm{~Hz}$), 1.46 $(3 \mathrm{H}, \mathrm{s}), 1.09(1 \mathrm{H}$, dddd, $J=12.9,11.9,11.9,3.6 \mathrm{~Hz}), 0.98(3 \mathrm{H}$, d, $J=6.3 \mathrm{~Hz}$), see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; CIMS: m / z (rel. int.) $281\left[\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}\right](6 \%), 265$ (82), 235 (50), 219 (100), 177 (78).

Compound 20: Oil; $[a]_{\mathrm{D}}-54$ ($c 1.0, \mathrm{CHCl}_{3}$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right)$: 2987, 2874, 1730, $1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$): $7.88(1 \mathrm{H}, \mathrm{d}$, $J=0.9 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{s}), 2.45(3 \mathrm{H}, \mathrm{s}), 2.33(1 \mathrm{H}, \mathrm{dd}, J=13.1,3.4$ $\mathrm{Hz}), 1.41(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1 ; HREIMS: m / z (rel. int.) $266.1514\left[\mathrm{M}^{+}-\mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}\right.$ requires 266.1518] (1\%), 237 (16), 219 (100), 177 (22), 163 (90), 159 (40), 124 (82).

Dehydration of $\mathbf{1 9}$. Compound 19 ($1.0 \mathrm{~g}, 3.36 \mathrm{mmol}$) was dissolved in $\mathrm{Ac}_{2} \mathrm{O}$-pyridine ($6 \mathrm{ml}-0.3 \mathrm{ml}$) and the solution was stirred at room temperature for 50 min . Completion of the reaction was determined by TLC and the reaction mixture was
then taken up in $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \%$, $3 \times 10 \mathrm{ml}), \mathrm{NaHCO}_{3}(5 \%, 3 \times 10 \mathrm{ml})$ and brine $(3 \times 50 \mathrm{ml})$, then dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and solvent removed under reduced pressure to yield a crude product ($0.91 \mathrm{~g}, 91 \% \mathrm{w} / \mathrm{w}$) consisting of $2(0.83 \mathrm{~g} ; 88 \%)$ and a little of $21(0.03 \mathrm{~g} ; 3 \%)$.

Compound 2: Solid; mp $159-161^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+85.2$ (c 3.5, $\left.\mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 3028,2959,2932,2876,1724,1629$, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right): 6.56(1 \mathrm{H}, \mathrm{s}), 5.99(1 \mathrm{H}, \mathrm{s}), 5.67$ $(1 \mathrm{H}, \mathrm{s}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=14.6,4.5 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}$, $J=5.8 \mathrm{~Hz}$), see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; CIMS: m / z (rel. int.) 281 [$\left.\mathrm{M}^{+}+1\right]$ (81%), 263 (89), 245 (78), 235 (91), 217 (100), 177 (95); HREIMS: m / z (rel. int.) $248.1421\left[\mathrm{M}^{+}-\mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right.$, requires 248.1412] (3\%), 230 (40), 190 (100).

Compound 21: Oil; $[a]_{\mathrm{D}}-243$ (c 0.2, CHCl_{3}); IR $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right): 3566,2956,2931,2873,1713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (δ, $\left.\mathrm{CDCl}_{3}\right): 9.97(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{s}), 5.04(1 \mathrm{H}, \mathrm{s}), 4.88$ $(1 \mathrm{H}, \mathrm{s}), 2.75(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{ddd}, J=17.2$, $9.7,5.2 \mathrm{~Hz}), 2.55(1 \mathrm{H}$, ddd, $J=17.2,7.8,5.8 \mathrm{~Hz}), 2.15(3 \mathrm{H}$, s), $0.95(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1.

Acid degradation of 2 in acetic acid-sulfuric acid-methanol. Compound $2(0.80 \mathrm{~g}, 2.86 \mathrm{mmol})$ was stirred in $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{-}$ $\mathrm{MeOH}(10 \mathrm{ml}-10 \mathrm{ml}-10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was poured into iced water $(200 \mathrm{ml})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$. The combined organic layers were then washed with water ($2 \times 50 \mathrm{ml}$) and brine (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed on a rotary evaporator to yield a crude mixture ($330 \mathrm{mg}, 41 \% \mathrm{w} / \mathrm{w}$), which was separated by HPLC (23% EtOAc- n-hexane): 14 ($R_{\mathrm{t}} 25.8 \mathrm{~min}, 6 \mathrm{mg}, 1 \%$); $\mathbf{1 6}\left(R_{\mathrm{t}} 28.6 \mathrm{~min}, 92 \mathrm{mg}, 12 \%\right) ; 22\left(R_{\mathrm{t}} 37.5 \mathrm{~min}, 8 \mathrm{mg}, 1 \%\right) ; 23\left(R_{\mathrm{t}}\right.$ $37.7 \mathrm{~min}, 37 \mathrm{mg}, 5 \%) ; 24\left(R_{\mathrm{t}} 49.0 \mathrm{~min}, 15 \mathrm{mg}, 2 \%\right) ; 25\left(R_{\mathrm{t}} 63.6\right.$ $\min , 73 \mathrm{mg}, 11 \%) ; \mathbf{2 8} / 29\left(R_{\mathrm{t}} 31.9 \mathrm{~min}, 12 \mathrm{mg}, 2 \%\right)$.

Compound 14: Oil; $[a]_{\mathrm{D}}-97.6$ (c 4.6, CHCl_{3}); IR $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right): 3011,2955,2875,1717,1666,1632,1441 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right): 6.44(1 \mathrm{H}, \mathrm{s}), 5.63(1 \mathrm{H}, \mathrm{s}), 5.59(1 \mathrm{H}, \mathrm{s}), 3.74$ $(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{dd}, J=13.1,3.5 \mathrm{~Hz}), 1.64(1 \mathrm{H}$, dddd, $J=13.4,13.4,13.1,2.3 \mathrm{~Hz}), 1.41$ (1 H , dddd, $J=13.4,12.9$, $12.9,3.7 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) $248.1423\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right.$, requires 248.1412] (18\%), 233 (4), 216 (100), 189 (29), 188 (30).

Compound 16: Oil; $[a]_{\mathrm{D}}-46.7$ (c 0.3, CHCl_{3}); IR $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right): 3120,2926,1767,1713,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, $\left.\mathrm{CDCl}_{3}\right): 6.35(1 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{dd}$, $J=13.2,5.2 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{ddd}, J=17.4,9.6,5.2 \mathrm{~Hz}), 2.38(1 \mathrm{H}$, ddd, $J=17.4,9.3,6.2 \mathrm{~Hz}$), $2.21(1 \mathrm{H}$, ddd, $J=10.5,9.3,5.2 \mathrm{~Hz})$, $2.12(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) $266.1516\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}\right.$, requires 266.1518] (1\%), 248 (50), 234 (23), 191 (18), 176 (100).

Compound 22: Oil; $[\alpha]_{\mathrm{D}}+9.7\left(c 0.3, \mathrm{CHCl}_{3}\right) ;$ IR $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$: $3011,2955,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right): 6.35(1 \mathrm{H}, \mathrm{s}), 5.88$ $(1 \mathrm{H}, \mathrm{d}, J=0.4 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=11.4,5.6 \mathrm{~Hz})$, $2.14(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) $266.1512\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}\right.$, requires 266.1518] (3%), 248 (56), 234 (32), 191 (20), 176 (100).

Compound 23: Oil; $[a]_{\mathrm{D}}+16.3$ (c 0.5, CHCl_{3}); IR $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right): 3034,2955,1713,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right)$: $6.33(1 \mathrm{H}, \mathrm{s}), 5.56(1 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=12.2$, $5.9 \mathrm{~Hz}), 2.65(1 \mathrm{H}$, ddd, $J=9.1,4.8,4.8 \mathrm{~Hz}), 2.57(1 \mathrm{H}$, ddd, $J=17.6,8.6,5.7 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{ddd}, J=17.6$, $13.5,6.7 \mathrm{~Hz}), 2.12(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, see Table 3 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) $266.1520\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}\right.$, requires 266.1518] (1\%), 248 (60), 234 (25), 191 (12), 176 (100).

Compound 24: Oil; $[a]_{\mathrm{D}}-1.5\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right)$: 3026, 2963, 1763, 1719, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right): 6.30$
$(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{d}$, $J=16.3 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}$, ddd, $J=16.3,1.8,1.8 \mathrm{~Hz})$, $2.38(1 \mathrm{H}, \mathrm{dd}, J=15.1,1.8 \mathrm{~Hz}), 2.28(1 \mathrm{H}, \mathrm{ddd}, J=15.1,14.8,5.5$ $\mathrm{Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, see Table 4 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: m / z (rel. int.) $234.1246\left[\mathrm{M}^{+}\right.$, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$, requires 234.1256] (26%), 216 (26), 176 (80), 111 (100).

Compound 25: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right)$: $6.17(1 \mathrm{H}, \mathrm{d}, J=1.2$ $\mathrm{Hz}), 5.57(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.71(1 \mathrm{H}, \mathrm{dd}, J=9.5,6.8 \mathrm{~Hz}), 2.56$ (1H, dddd, $J=15.6,4.4,2.5,2.2 \mathrm{~Hz}), 2.51(1 \mathrm{H}, \mathrm{dd}, J=15.0,2.2$ $\mathrm{Hz}), 2.38(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{ddd}, J=15.6,12.8,7.1$ $\mathrm{Hz}), 2.19(1 \mathrm{H}, \mathrm{m}), 1.02(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$, see Table 4 for assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: m / z (rel. int.) $234.1252\left[\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\right.$, requires 234.1256] (91%), 206 (100), 177 (65), 161 (65).

Compound 26: Oil; $[a]_{\mathrm{D}}+4.1\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right)$: 3028, 2957, 2872, 1719, 1668, 1624, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, $\left.\mathrm{CDCl}_{3}\right): 6.22(1 \mathrm{H}, \mathrm{s}), 5.94(1 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 3.76$ $(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}, \mathrm{ddd}, J=16.2,4.8,3.0 \mathrm{~Hz}), 1.04$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}\right.$), see Table 4 for assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: m / z (rel. int.) $248.1410\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right.$, requires 248.1412$]$ (100%), 233 (45), 216 (85), 201 (15), 188 (75).

Compound 27: isolated as an inseparable mixture with 23. Characterized as a mixture by 2D-NMR. ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right)$: $6.40(1 \mathrm{H}, \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{s}), 5.66(1 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.40(1 \mathrm{H}$, $\mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$, see Table 4 for assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: as for 23.

Compound 28: Oil; $[a]_{\mathrm{D}}+57.5$ (c 0.2, CHCl_{3}); IR $v_{\max ^{-}}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right): 3020,2949,1769,1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right)$: $6.49(1 \mathrm{H}, \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, see Table 4 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 3; HREIMS: m / z (rel. int.) $234.1251\left[\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\right.$, requires 234.1256] (15\%), 209 (15), 176 (100).

Compound 29: isolated as an inseparable mixture with 28. Characterized as a mixture by $2 \mathrm{D}-\mathrm{NMR} .{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right)$: $6.51(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, see Table 4 for assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: as for 28.

Forward synthesis of 6,7-dehydroartemisinic acid (13) from artemisitene (2)

Acid degradation of $\mathbf{2}$ in sulfuric acid-methanol. To a solution of $\mathbf{2}(0.8 \mathrm{~g}, 2.86 \mathrm{mmol})$ in $\mathrm{MeOH}(18 \mathrm{ml})$ cooled in an ice bath, was added conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(12 \mathrm{ml})$ and the reaction was stirred at room temperature for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ were added to the reaction mixture, which was extracted by $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined organic layers were washed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($5 \%, 3 \times 20 \mathrm{ml}$) and brine ($3 \times 50 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was removed under reduced pressure to obtain a crude product $(0.74 \mathrm{~g}, 93 \% \mathrm{w} / \mathrm{w})$, which was separated by CC (30% EtOAc- n-hexane) to yield 14 ($0.50 \mathrm{~g}, 70 \%$).

Reaction of 14 with a methyl Grignard reagent. To small Mg chips $(0.044 \mathrm{~g}, 1.79 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ was added $\mathrm{MeI}(0.132 \mathrm{ml}, 1.43 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ and the reaction mixture was refluxed under N_{2} for 2 h . A solution of $\mathbf{1 4}(0.2 \mathrm{~g}, 0.81 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was added dropwise and reflux continued for a further 2.5 h until the reaction was complete, as determined by TLC. The reaction mixture was cooled by an ice bath and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added to destroy the excess Grignard reagent. The reaction mixture was then extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$ and the combined organic layers were washed with brine ($3 \times 10 \mathrm{ml}$), dried (Mg SO_{4}) and the solvent was removed under reduced pressure to yield a crude mixture consisting of $\mathbf{3 0}$ and $\mathbf{3 1}(0.15 \mathrm{~g}, 75 \% \mathrm{w} / \mathrm{w})$ which could be separated by HPLC (20% EtOAc- n-hexane$\left.0.5 \% \mathrm{CH}_{3} \mathrm{COOH}\right)$.

Compound 32 was also obtained as a minor side-product
when a larger excess of Grignard reagent was used in the reaction.

Compound 30 ($R_{\mathrm{t}} 22.1 \mathrm{~min} ; 68 \mathrm{mg}, 32 \%$): Oil; $[a]_{\mathrm{D}}-48.2$ (c 1.2, CHCl_{3}); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right): 3460(\mathrm{br}), 3007,2953,2870$, 1717, 1628, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$): $6.35(1 \mathrm{H}, \mathrm{d}$, $J=1.0 \mathrm{~Hz}), 5.55(1 \mathrm{H}, \mathrm{dd}, J=1.0,1.0 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{s}), 3.74$ $(3 \mathrm{H}, \mathrm{s}), 3.14(1 \mathrm{H}$, ddd, $J=11.6,1.0,1.0 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{s}), 0.97$ ($3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR: see Table 2 for partially assigned data; HREIMS: m / z (rel. int.) $264.1735\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right.$, requires 264.1725 (1%), 246 (78), 231 (20), 214 (11), 187 (100), 171 (23).

Compound 31 ($R_{\mathrm{t}} 19.3 \mathrm{~min} ; 75 \mathrm{mg}, 35 \%$): Oil; $[a]_{\mathrm{D}}-54.8$ (c 1.3, CHCl_{3}); IR $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 3420$ (br), 3034, 2926, 2858, $1717,1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right): 6.33(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, $5.55(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.14(1 \mathrm{H}, \mathrm{d}$, $J=13.1 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: see Table 2 for partially assigned data; HREIMS: m / z (rel. int.) $264.1721\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right.$, requires 264.1725] (1\%), 246 (90), 231 (23), 214 (12), 203 (16), 187 (100), 171 (27).

Compound 32 ($R_{\mathrm{t}} 9.8 \mathrm{~min}, 3 \%$ EtOAc- n-hexane; 12 mg , $6 \%)$: Oil; $[a]_{\mathrm{D}}-4.3\left(c 0.38, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} v_{\max }\left(\mathrm{CHCl}_{3}\right): 3020,2932$, $2872,1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right): 5.17(1 \mathrm{H}, \mathrm{s}), 4.84(1 \mathrm{H}, \mathrm{d}$, $J=2.6 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 2.37(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz})$, $1.62(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz})$, see Table 4 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: m / z (rel. int.) $246.1979\left[\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}\right.$, requires 264.1984] (36\%), 231 (63), 228 (83), 213 (100), 201 (45), 171 (50).

Dehydration of 30 and 31. To the crude mixture of $\mathbf{3 0}$ and 31 $(0.09 \mathrm{~g}, 0.34 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}(70 \%$, 2 ml). The reaction mixture was stirred overnight at room temperature, extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, washed with brine $(3 \times 10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was removed under reduced pressure to yield $33(0.07 \mathrm{~g} ; 83 \%)$ without the need for further purification.

Compound 33: Oil; $[a]_{\mathrm{D}}+13.5$ (c $0.9, \mathrm{CHCl}_{3}$); IR $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right): 2930,2874,1713,1618,1456,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, $\left.\mathrm{CDCl}_{3}\right): 6.32(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{s}), 5.49(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, see Table 4 for full assignments; ${ }^{13} \mathrm{C}$ NMR: see Table 2; HREIMS: m / z (rel. int.) $246.1623\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}\right.$, requires 246.1620] (12\%), 203 (50), 187 (100), 111 (85).

Hydrolysis of the ester in 33. To a solution of $33(0.02 \mathrm{~g}$, $0.08 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}-10 \mathrm{ml})$ was added KOH powder $(0.05 \mathrm{~g})$. The reaction mixture was refluxed overnight, then acidified by dropwise addition of $\mathrm{HCl}(10 \%)$ to pH 2 , extracted by $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{ml})$, washed with brine ($3 \times 10 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed under reduced pressure to yield $13(0.016 \mathrm{~g} ; 85 \%)$ without the need for further purification.

Compound 13: Oil; $[a]_{\mathrm{D}}+160.0$ (c 1.6, CHCl_{3}); IR $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right): 3400-2700$ (br), 3020, 2928, 1693, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right): 6.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.61$ $(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz})$, see Table 3 for full analysis; ${ }^{13} \mathrm{C}$ NMR: see Table 1; HREIMS: m / z (rel. int.) $232.1458\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}\right.$, requires 232.1463] (50\%), 217 (16), 187 (100), 153 (35).

Acknowledgements

We thank the Generic Drug Research Project of the Chemistry Department of the University of Hong Kong for providing a postdoctoral fellowship to Dr Lai-King Sy. Mr Kin-Fai Ho, Gary performed some preliminary synthetic studies. This research was funded by a grant from the CRCG.

References

1 J.-M. Liu, M.-Y. Ni, Y.-Y. Fan, Y.-Y. Tu, Z.-H. Wu, Y.-L. Wu and W.-S. Zhou, Hиaxue Xuebao, 1979, 37, 129.

2 L.-K. Sy, G. D. Brown and R. Haynes, Tetrahedron, 1998, 54, 4345.
3 L.-K. Sy and G. D. Brown, Phytochemistry, 1998, 48, 1207.
4 G. Schmid and W. Hofheinz, J. Am. Chem. Soc., 1983, 105, 624.
5 X.-X. Xu, J. Zhu, D.-Z. Huang and W.-S. Zhou, Tetrahedron, 1986, 42, 819.
6 W.-S. Zhou, Pure Appl. Chem., 1986, 58, 817.
7 T. Ravindranathan, M. Anil Kumar, R. B. Menon and S. V. Hiremath, Tetrahedron Lett., 1990, 31, 755.
8 M. A. Avery, W. K. M. Chong and C. Jennings-White, J. Am. Chem. Soc., 1992, 114, 974.
9 J. B. Bhonsle, B. Pandey, V. H. Deshpande and T. Ravindranathan, Tetrahedron Lett., 1994, 35, 5489.
10 H.-J. Liu, W.-L. Yeh and S. Y. Chew, Tetrahedron Lett., 1993, 34, 4435.

11 W.-S. Zhou and X.-X. Xu, Acc. Chem. Res., 1994, 27, 211.
12 M. G. Constantino, M. Beltrame and G. V. J. da Silva, Synth. Comтип., 1996, 26, 321.
13 B. Ye and Y.-L. Wu, J. Chem. Soc., Chem Commun., 1990, 726.
14 R. J. Roth and N. Acton, J. Chem. Educ., 1991, 68, 612.
15 N. Acton and R. J. Roth, J. Org. Chem., 1992, 57, 3610.
16 M. A. Avery, J. D. Bonk and S. Mehrotra, J. Labelled Compd. Radiopharm., 1995, 38, 249.
17 D. Nowak and P. T. Lansbury, Tetrahedron, 1998, 54, 319.
18 M. Schwaebe and R. D. Little, J. Org. Chem., 1996, 61, 3240.
19 R. K. Haynes and S. C. Vonwiller, J. Chem. Soc., Chem. Commun., 1990, 451.
20 M. Jung, X. Li, D. A. Bustos, H. N. ElSohly and J. D. McChesney, Tetrahedron Lett., 1989, 30, 5973
21 M. Jung, H. N. ElSohly, E. M. Croom, A. T. McPhail and D. R. McPhail, J. Org. Chem., 1986, 51, 5417.

22 L.-K. Sy, N.-Y. Zhu and G. D. Brown, Tetrahedron, in the press.
23 W.-S. Zhou, D.-Z. Huang, X.-F. Ping, L. Zhang, J. Zhu and X.-X. Xu, Huaxue Xuebao, 1989, 47, 710.

24 M. Jung, Y. Yoo, H. N. ElSohly and J. D. McChesney, J. Nat. Prod., 1987, 50, 972
25 N. Acton and R. J. Roth, Phytochemistry, 1989, 28, 3530.

26 L.-K. Sy, K.-K. Cheung, N.-Y. Zhu and G. D. Brown, Tetrahedron, in the press.
27 G. D. Brown, J. Nat. Prod., 1992, 55, 1756
28 W.-S. Zhou, L. Zhang and X.-X. Xu, Hиaxue Xuebao, 1986, 44, 968.

29 Z.-H. Wu and Y.-Y. Wang, Huaxue Xuebao, 1984, 42, 596.
30 D.-Y. Zhu, D.-A. Deng, S.-G. Zhang and R.-S. Xu, Ниахие Xиеbao, 1984, 42, 937.
31 F.-S. El-Feraly, I. A. Al-Meshal and S. I. Khalifa, J. Nat. Prod., 1989, 52, 196.
32 S.-M. Hui, K.-S. Ngo and G. D. Brown, J. Chem. Soc., Perkin Trans. 1, 1997, 3435.
33 Y. Imakura, K. Hachiya, T. Ikemoto, S. Yamashita, M. Kihara, S. Kobayashi, T. Shingu, W. K. Milhous and K.-H. Lee, Heterocycles, 1990, 31, 1011.
34 F. S. El-Feraly, A. Ayalp, M. A. Al-Yahya, D. R. McPhail and A. T. McPhail, J. Nat. Prod., 1990, 53, 66.

35 L. Zhang and W.-S. Zhou, Hиaxue Xuebao, 1989, 47, 1117
36 L.-K. Sy, S.-M. Hui, K.-K. Cheung and G. D. Brown, Tetrahedron, 1997, 53, 7493.
37 Y.-M. Pu, B. Yagen and H. Ziffer, Tetrahedron Lett., 1994, 35, 2129.

38 B. Yagen, Y. M. Pu, H. J. C. Yeh and H. Ziffer, J. Chem. Soc., Perkin Trans. 1, 1994, 843.
39 B. Venugopalan, P. J. Karnik and S. Shinde, J. Chem. Soc., Perkin Trans. 1, 1996, 1015.
40 Y.-L. Wu and Y. Li, Med. Chem. Res., 1995, 5, 569
41 R. K. Haynes, H. H.-H. Pai and A. Voerste, Tetrahedron Lett., 1999, 40, 4715.
42 F. S. El-Feraly, A. Ayalp, M. A. Al-Yahya, D. R. McPhail and A. T. McPhail, J. Nat. Prod., 1990, 53, 920.

43 M.-Y. Zeng, L.-N. Li, S.-F. Chen, G.-Y. Li, X.-T. Liang, M. Chen and J. Clardy, Tetrahedron, 1983, 39, 2941.
44 Y. Li, Y.-X. Chen, P.-L. Yu and R.-Y. Ji, Yaoxue Xuebao, 1986, 21, 899.

45 W.-S. Zhou and Y.-C. Wen, Hиaxue Xuebao, 1984, 42, 455.

[^0]: \dagger The IUPAC name for decalenone is 4,4a,5,6,7,8-hexahydro-naphthalen-2(3H)-one.
 \ddagger The suffix "a" is used herein to indicate the 11,13-dihydro analogue of a compound.

